
Online Bagging and Boosting

Nikunj C. Oza
Intelligent Systems Division

NASA Ames Research Center
Mail Stop 269-3

Moffett Field, CA, USA
oza@email.arc.nasa.gov

Abstract – Bagging and boosting are two of the most
well-known ensemble learning methods due to their
theoretical performance guarantees and strong
experimental results. However, these algorithms have been
used mainly in batch mode, i.e., they require the entire
training set to be available at once and, in some cases,
require random access to the data. In this paper, we
present online versions of bagging and boosting that
require only one pass through the training data. We build
on previously presented work by describing some
theoretical results. We also compare the online and batch
algorithms experimentally in terms of accuracy and
running time.

Keywords: Bagging, boosting, ensemble learning, online
learning.

1 Introduction
 Traditional supervised learning algorithms generate a
single model such as a Naïve Bayes classifier or multilayer
perceptron (MLP) and use it to classify examples.1

Ensemble learning algorithms combine the predictions of
multiple base models, each of which is learned using a
traditional algorithm. Bagging [3] and Boosting [4] are
well-known ensemble learning algorithms that have been
shown to improve generalization performance compared to
the individual base models. Theoretical analysis of
boosting's performance supports these results [4].

In previous work [1][2], we developed online versions
of bagging and boosting. Online learning algorithms
process each training example once “on arrival” without the
need for storage and reprocessing, and maintain a current
model that reflects all the training examples seen so far.
Such algorithms run faster than typical batch algorithms in
situations where data arrive continuously. They are also
faster with large training sets for which the multiple passes
through the training set required by most batch algorithms
are prohibitively expensive. In Sections 2 and 3, we
describe our online bagging and online boosting
algorithms, respectively. In particular, we describe how we
mirror the methods that the batch bagging and boosting
algorithms use to generate diverse base models, which are
known to help ensemble performance.

1 In this paper, we only deal with the classification
problem.

There have been other recent efforts to develop online
ensemble learning algorithms. An online bagging
algorithm was developed [7] in which the user chooses the
probability that each training example is chosen for
inclusion in each base model’s training set. After
considerable tuning, it performed comparably to online
bagging [5]. The same paper [7] contains an online
boosting algorithm that attempts to duplicate Breiman’s
Arc-x4 algorithm. In [8], the authors develop a lossless
online bagging algorithm that draws training example
weights for each base model according to a Gamma
distribution. However, their algorithm is lossless relative
to a batch bagging algorithm that uses a Dirichlet
distribution to draw its weights rather than the original
bagging algorithm.

In our previous work, we also discussed some
preliminary theoretical results and some empirical
comparisons of the classification accuracies of our online
algorithms with their corresponding batch algorithms on
many datasets of varying size. In Sections 2 and 3, we give
a brief description of some additional theoretical results. In
Section 4, we review the experimental results in our
previous work demonstrating the performance of our online
algorithms relative to their batch counterparts. In this
paper, we expand upon these results by comparing their
running times. We test our online bagging and boosting
algorithms with two different base models: Naïve Bayes
classifiers and MLPs. We chose Naïve Bayes classifiers
because a lossless online learning algorithm is available for
them. For a given training set, a lossless online learning
algorithm returns a model identical to that returned by the
corresponding batch algorithm. For MLPs, we are forced to
use a lossy online learning algorithm. In particular, we do
not allow the MLP’s backpropagation algorithm to cycle
through the entire training set in multiple epochs the way
backpropagation is normally allowed to do. Overall, our
online bagging and boosting algorithms perform
comparably to their batch counterparts in terms of
classification accuracy when using Naïve Bayes base
models. The loss experienced by online MLPs relative to
batch MLPs leads to a significant loss for online bagging
and boosting relative to the batch versions. Online bagging
often does improve significantly upon online MLPs;
however, online boosting never performs significantly
better than single online MLPs in our tests. We also
compare the running times of the batch and online
algorithms. If the online base model learning algorithm is
not significantly slower than the corresponding batch
algorithm, then the bagging and online bagging algorithms

do not have a large difference in their running time in our
tests. On the other hand, our online boosting algorithm
runs significantly faster than batch boosting. For example,
on our largest dataset, batch boosting ran twice as long as
online boosting to achieve comparable classification
accuracy.

2 Online Bagging
Given a training dataset T of size N , standard batch

bagging creates M base models. Each model is trained by
calling the batch learning algorithm Lb on a bootstrap
sample of size N created by drawing random samples with
replacement from the original training set. Figure 1 gives
the pseudocode for bagging.

€

Bagging(T,Lb ,M)
 For each m ∈ 1,2,K,M{ },
 Tm = Sample_With_Replacement(T,T)
 hm = Lb Tm()
 Return h1,h2,K,hM{ }

Figure 1: Bagging Algorithm

Each base model's training set contains K copies of
each of the original training examples where

€

P K = k() =
N
k

1
N

k

1− 1
N

N−k

which is the Binomial distribution. As

€

N→∞ , the
distribution of K tends to a Poisson(1) distribution:

€

P(K = k) ~ exp(−1) /k!. As discussed in [1] [2], we can
perform bagging online as follows: as each training
example d=(x,y) is presented to our algorithm, for each
base model, choose the example

€

K ~ Poisson(1) times
and update the base model accordingly using the online
base model learning algorithm Lo (see Figure 2). New
examples are classified the same way in online and batch
bagging---by unweighted voting of the M base models.

€

OnlineBagging(h,Lo,d)
 For each base model hm ∈ h,m ∈ 1,2,K,M{ },
 Set k according to Poisson(1).
 Do k times
 hm = Lo hm ,d().

Figure 2: Online Bagging Algorithm

Online bagging is a good approximation to batch
bagging to the extent that their base model learning
algorithms produce similar models when trained with

similar distributions of training examples. In past work
[1][5], we proved that if the same original training set is
supplied to the two bagging algorithms, then the
distributions over the training sets supplied to the base
models in batch and online bagging converge as the size of
that original training set grows to infinity. We have also
proven that the classifiers returned by bagging and online
bagging converge to the same classifier given the same
training set as the number of models and training examples
tends to infinity under two conditions. The first is that the
base model learning algorithms return classifiers that
converge toward the same classifier as the number of
training examples grows. The second is that, given a fixed
training set T, the online and batch base model learning
algorithms return the same classifier for any number of
copies of T that are presented to the learning algorithm. For
example, doubling the training set by repeating every
example in T yields the same classifier as T would yield.
For example, this condition is true of decision trees and
Naïve Bayes classifiers, but is not true of MLPs, since
doubling the training set effectively doubles the number of
epochs in backpropagation training. Due to a lack of space,
please see [5] for formal details.

€

AdaBoost(x1,y1(), x2,y2(),K, xN ,yN(){ },Lb,M)

 Initialize D1 n() =1/N for all n ∈ 1,2,K,N{ }.
 For all m ∈ 1,2,K,M{ },

 hm = Lb x1,y1(), x2,y2(),K, xN ,yN(){ },Dm().

 εm = Dm n()I hm xn() ≠ yn()
n=1

N

∑ .

 If εm ≥1/2 then set M = m -1 and abort loop.
 For all n ∈ 1,2,K,N{ },

 Dm+1 n() = Dm n() ×

1
2 1−εm()

 if hm xn() = yn

1
2εm

 otherwise

 Return h fin x() =

 argmaxy∈Y log 1−εm
εm

 I hm xn() = yn()

m=1

M

∑
Figure 3: AdaBoost algorithm

3 Online Boosting
Our online boosting algorithm is designed to be an

online version of AdaBoost.M1 [4] (the pseudocode is
given in Figure 3). AdaBoost generates a sequence of base
models

€

h1,h2,K,hM using weighted training sets
(weighted by

€

D1,D2,K,DM) such that the training

examples misclassified by model

€

hm−1 are given half the
total weight when generating model

€

hm and the correctly
classified examples are given the remaining half of the
weight.

€

Initial conditions : For all m ∈ 1,2,K,M{ },

 λm
sc = 0,λm

sw = 0.
OnlineBoosting(h,Lo,(x,y))
 Set λ =1.
 For each base model hm ∈ h,m ∈ 1,2,K,M{ },
 Set k according to Poisson(λ).
 Do k times
 hm = Lo hm ,(x,y)().
 If y = hm x()
 λm

sc ← λm
sc + λ

 εm ←
λm
sw

λm
sc + λm

sw

 λ← λ
1

2 1-εm()

 else
 λm

sw ← λm
sw + λ

 εm ←
λm
sw

λm
sc + λm

sw

 λ← λ
1

2εm

 end
To classify a new example with input x, return :

hfin x() = argmaxy∈Y log 1−εm
εm

m=1

M

∑ I hm x() = y().

Figure 4: Online Boosting Algorithm

Our online boosting algorithm (Figure 4) simulates
sampling with replacement using the Poisson distribution
just like online bagging does. The only difference is that
when a base model misclassifies a training example, the
Poisson distribution parameter

€

λ associated with that
example is increased when presented to the next base
model; otherwise it is decreased. Just as in AdaBoost, our
algorithm gives the examples misclassified by one stage
half the total weight in the next stage; the correctly
classified examples are given the remaining half of the
weight. This is done by keeping track of the total weights
of each base model’s correctly classified and misclassified

training examples (

€

λm
sc and

€

λm
sw , respectively) and using

these to update each base model’s error εm. At this point, a
training example’s weight is updated the same way as in
AdaBoost.

One area of concern is that, in AdaBoost, an example's
weight is adjusted based on the performance of a base
model on the entire training set while in online boosting,
the weight adjustment is based on the base model's
performance only on the examples seen earlier. To see why
this may be an issue, consider running AdaBoost and
online boosting on a training set of size 10000. In
AdaBoost, the first base model

€

h1 is trained on all 10000
examples before being tested on, say, the tenth training
example. In online boosting,

€

h1 is trained on only the first
ten examples before being tested on the tenth example.
Clearly, at the moment when the tenth training example is
being tested, we may expect the two

€

h1's to be very
different; therefore,

€

h2 in AdaBoost and

€

h2 in online
boosting may be presented with different weights for the
tenth training example. This may, in turn, lead to different
weights for the tenth example when generating

€

h3 in each
algorithm, and so on. Intuitively, we want online boosting
to get a good mix of training examples so that the base
models and their normalized errors in online boosting
quickly converge to what they are in AdaBoost. The more
rapidly this convergence occurs, the more similar the
training examples' weight adjustments will be and the more
similar their performances will be. We have proven [5] that
for Naïve Bayes base models, the online and batch boosting
algorithms converge to the same classifier as the number of
models and training examples tend to infinity.

4 Experimental Results
In this section, we discuss results on several datasets,

whose names and numbers of training examples, test
examples, inputs, and classes are given in Table 1. The
Census Income dataset comes with fixed training and test
sets, which we use in our experiments. For the remaining
datasets, we used 5-fold cross-validation. We tested with
some small datasets to show that the online algorithms can
often achieve performance comparable to batch algorithms
even when given a small number of data points. Of course,
our results with larger datasets are more important. All but
three of the datasets are from the UCI KDD repository [6].
The remaining three are synthetic datasets that were chosen
because the performance of a single Naïve Bayes classifier
varies significantly across these three datasets. These
datasets allow us to compare the performances of the online
and batch ensemble algorithms on datasets of varying
difficulty.

4.1 Accuracy

We present results using two different base model
types: Naïve Bayes classifiers and multilayer perceptrons
(MLPs). Both bagging algorithms generated 100 base

models. Both boosting algorithms were allowed to generate
up to 100 base models. All the results shown are based on
10 runs of 5-fold cross validation (except on the Census
Income dataset, where we used the supplied training and
test sets). All the online algorithms were run five times for
every one time the batch algorithm was run, with different
random orders of the training set. This was done to account
for the effect that the order of the training examples can
have on the performance of an online learning algorithm.
The online MLP was trained by using backpropagation to
update the MLP with each training example ten times upon
arrival; however, the algorithm only ran through the entire
training set once in the order in which it was presented. The
batch MLP was trained by using backpropagation to update
the MLP in ten epochs (ten cycles through the entire
training set). All comparisons between algorithms were
made using a paired t-test (α=0.05).

Table 1: The datasets used in our experiments.

Data Set Train
Set

Test
Set

Input Class

Promoters 84 22 57 2
Balance 500 125 4 3
Breast Cancer 559 140 9 2
German Credit 800 200 20 2
Car Evaluation 1382 346 6 4
Chess 2556 640 36 2
Mushroom 6499 1625 22 2
Nursery 10368 2592 8 5
Connect4 54045 13512 42 3
Synthetic-1 80000 20000 20 2
Synthetic-2 80000 20000 20 2
Synthetic-3 80000 20000 20 2
Census Income 199523 99762 39 2
Forest Covertype 464809 116203 54 7

Table 2 shows the results of running bagging with
Naïve Bayes classifiers. Entries in boldface/italics indicate
that the ensemble algorithm performed significantly
better/worse than a single Naïve Bayes classifier. The batch
and online bagging algorithms performed comparably to
each other (i.e., no statistically significant differences) and
mostly performed comparably to the batch Naïve Bayes
algorithm. This is expected due to the stability of Naïve
Bayes classifiers [3]. That is, the Naïve Bayes classifiers in
a bagged ensemble tend to classify new examples the same
way (we obtained at least 90% agreement on all test
examples) in spite of the differences in the training sets.

Table 3 shows the results of running the boosting
algorithms with Naïve Bayes classifiers. In the “Online
Boosting” column, any entry with a ‘+’ or ‘-‘ after it
indicates that online boosting performed significantly
better/worse than batch boosting, respectively. Batch
boosting significantly outperforms online boosting in many
cases---especially the smaller datasets. However, the
performances of boosting and online boosting relative to a
single Naïve Bayes classifier agree to a remarkable extent.
That is, when one of them is significantly better or worse

than a single Naïve Bayes classifier, the other tends to be
the same way.

Table 2: Bagging vs. Online Bagging, Naïve Bayes

Dataset Naïve
Bayes

Bagging Online
Bagging

Promoters 0.8774 0.8354 0.8401
Balance 0.9075 0.9067 0.9072
Breast Cancer 0.9647 0.9665 0.9661
German Credit 0.7483 0.748 0.7483
Car Evaluation 0.8569 0.8532 0.8547
Chess 0.8757 0.8759 0.8749
Mushroom 0.9966 0.9966 0.9966
Nursery 0.9031 0.9029 0.9027
Connect4 0.7214 0.7212 0.7216
Synthetic-1 0.4998 0.4996 0.4997
Synthetic-2 0.7800 0.7801 0.7800
Synthetic-3 0.9251 0.9251 0.9251
Census Income 0.7630 0.7637 0.7636
Forest Covertype 0.6761 0.6762 0.6762

Table 3: Boosting vs. Online Boosting, Naïve Bayes

Dataset Naïve
Bayes

Boosting Online
Boosting

Promoters 0.8774 0.8455 0.7136-
Balance 0.9075 0.8754 0.8341-
Breast Cancer 0.9647 0.9445 0.9573+
German Credit 0.7483 0.735 0.6879-
Car Evaluation 0.8569 0.9017 0.8967-
Chess 0.8757 0.9517 0.9476-
Mushroom 0.9966 0.9999 0.9987-
Nursery 0.9031 0.9163 0.9118-
Connect4 0.7214 0.7197 0.7209
Synthetic-1 0.4998 0.5068 0.5007-
Synthetic-2 0.7800 0.8446 0.8376-
Synthetic-3 0.9251 0.9680 0.9688
Census Income 0.7630 0.9365 0.9398
Forest Covertype 0.6761 0.6753 0.6753

Table 4 shows the results of running bagging with MLPs.
The entries for bagging shown in boldface/italics indicate
that bagging significantly outperformed/underperformed
relative to the batch MLP. The entries for online bagging
shown in boldface/italics indicate that online bagging
significantly outperformed/underperformed relative to the
online MLP. The entries for online bagging with a ‘-‘ after
them indicate that it performed significantly worse than
batch bagging for that dataset. The online MLP always
performed significantly worse than the batch MLP;
therefore, it is not surprising that online bagging often
performed significantly worse than batch bagging.
However, online bagging did significantly outperform
online MLPs most of the time.

Table 5 gives the results of running boosting with MLPs.
Entries in the online MLP and boosting column that are
given in boldface/italics indicate that it significantly
outperformed/underperformed relative to batch MLPs.
Entries in the online boosting column given in

boldface/italics indicate times when it significantly
outperformed/underperformed relative to the online MLP.

Table 4: Bagging vs. Online Bagging, MLPs

Dataset MLP Online
MLP

Bagging Online
Bagging

Promoters 0.8982 0.8036 0.9036 0.7691-
Balance 0.9194 0.8965 0.9210 0.9002-
Breast 0.9527 0.9020 0.9561 0.8987-
German 0.7469 0.7062 0.7495 0.7209-
Car Eval. 0.9422 0.8812 0.9648 0.8877-
Chess 0.9681 0.9023 0.9827 0.9185-
Mushroom 1.0 0.9995 1.0 0.9988-
Nursery 0.9829 0.9411 0.9743 0.9396-
Connect4 0.8199 0.7042 0.8399 0.7451-
Synthetic-1 0.7217 0.6514 0.7326 0.6854-
Synthetic-2 0.8564 0.8345 0.8584 0.8508-
Synthetic-3 0.9824 0.9811 0.9824 0.9824
Census Inc 0.9519 0.9487 0.9533 0.9487-
Forest Cov 0.7573 0.6974 0.7787 0.7052-

Table 5: Boosting vs. Online Boosting, MLPs

Dataset MLP Online
MLP

Boosting Online
Boosting

Promoters 0.8982 0.8036 0.8636 0.6155-
Balance 0.9194 0.8965 0.9534 0.8320-
Breast 0.9527 0.9020 0.9540 0.8847-
German 0.7469 0.7062 0.7365 0.6788-
Car Eval. 0.9422 0.8812 0.9963 0.8806-
Chess 0.9681 0.9023 0.9941 0.8954-
Mushroom 1.0 0.9995 0.9998 0.9993-
Nursery 0.9829 0.9411 0.9999 0.9445-
Connect4 0.8199 0.7042 0.8252 0.6807-
Synthetic-1 0.7217 0.6514 0.7222 0.6344-
Synthetic-2 0.8564 0.8345 0.8557 0.8117-
Synthetic-3 0.9824 0.9811 0.9824 0.9583-
Census Inc 0.9519 0.9487 0.9486 0.9435
Forest Cov 0.7573 0.6974 0.7684 0.6329-

Entries with a ‘-‘ after them indicate times when
online boosting performed significantly worse than batch
boosting. Clearly, the significant loss in using an online
MLP instead of a batch MLP has rendered the online
boosting algorithm significantly worse than batch boosting.

4.2 Running Time

In this section, we report and analyze the running
times of the batch and online algorithms that we
experimented with. There are several factors that affect the
difference between the running times of an online learning
algorithm and its batch counterpart. Online learning
algorithms’ main advantage over batch learning algorithms
is the ability to incrementally update their models with new
training examples---batch algorithms often have to throw
away the previously learned model and learn a new model
after adding the new examples to the training set. This is
clearly very wasteful computationally and is impossible
when there are more data than can be stored. Additionally,

batch bagging must cycle through the dataset at least MT
times, where M is the number of base models and T is the
number of times the base model learning algorithm must
cycle through the training set to construct one model.
Therefore, each training example is examined MT times. On
the other hand, online bagging only needs to sweep through
the training set once, which means that each training
example is examined only M times (once to update each
base model’s parameters). Online algorithms do not require
storing the entire training set. However, for a fixed training
set (i.e., one to which new training examples are not
continually added), batch algorithms sometimes run faster
than the corresponding online algorithms. This is because
batch algorithms can often set their model parameters once
and for all by examining the entire training set at once
while online algorithms have to update their parameters
once per training example.

Table 6: Running times (sec.) for
Naïve Bayes and Ensembles.

Dataset Naïve
Bayes

Bag Online
Bag

Boost Online
Boost

Promoters 0.02 0.2 0.22 0.44 0.72
Balance 0 0.1 0.1 0.26 0.06
Breast 0.02 0.14 0.32 1.32 0.66
German 0 0.14 0.38 0.7 1.5
Car Eval. 0.04 0.34 0.44 0.88 1.72
Chess 0.42 1.02 1.72 9.42 7.46
Mushroom 0.38 2.14 3.28 114 11.08
Nursery 0.86 1.82 3.74 31.4 20.74
Connect4 6.92 33.98 42.04 647 465
Synthetic-1 7.48 45.6 64.16 1352 394
Synthetic-2 5.94 44.78 74.84 5333 343
Synthetic-3 4.58 44.98 56.2 3762 284
Census Inc 56.6 131.8 157.4 25605 1200
Forest Cov 106 371.8 520.2 67611 15638

Table 7: Running times (sec.) for MLPs and Bagging.

Dataset MLP Online
MLP

Bag Online
Bag

Promoters 2.58 2.34 442.7 334.6
Balance 0.12 0.14 12.48 11.7
Breast Cancer 0.12 0.18 8.14 6.58
German Credit 0.72 0.68 73.64 63.5
Car Evaluation 0.6 0.46 36.86 36.82
Chess 1.72 1.92 166.8 159.8
Mushroom 7.68 6.64 828.4 657.5
Nursery 9.14 9.22 1119 1005
Connect4 2338 1134 156009 105036
Synthetic-1 142.0 149.3 15450 16056
Synthetic-2 301 124.2 24447 13328
Synthetic-3 203.8 117.5 17673 12469
Census Income 4221 1406 201489 131135
Forest
Covertype

2071 805.0 126519 73902

The comparison between batch and online boosting has the
additional factor of the number of base models. Batch
boosting, when called with the upper limit of M base

models, can choose to generate fewer models---recall that if
a model’s error is greater than 0.5, then boosting will
discard that model and return the ensemble generated so far.
Online boosting does not have this luxury because it does
not know what the final error rates will be for each base
model. This difference can lead to lower training times for
batch boosting. However, batch boosting needs to cycle
through the training set M(T+1) times---each of the M base
models requires T cycles through the training set to learn
the model and one cycle to calculate the error on the
training set. Online boosting only requires one sweep
through the training set.

Table 8: Running times (sec.) for MLP and Boosting.

Dataset MLP Online
MLP

Boost Online
Boost

Promoters 2.58 2.34 260.9 83.18
Balance 0.12 0.14 1.96 4.18
Breast 0.12 0.18 2.56 2.28
German 0.72 0.68 11.86 23.76
Car Eval. 0.6 0.46 44.04 9.2
Chess 1.72 1.92 266.7 32.42
Mushroom 7.68 6.64 91.72 53.28
Nursery 9.14 9.22 1537 160.2
Connect4 2338 1134 26461 58277
Synthetic-1 142.0 149.3 6431 8806
Synthetic-2 301 124.2 10414 5644
Synthetic-3 203.8 117.5 9262 1652
Census Inc 4221 1406 89608 52362
Forest Cov 2071 805.0 141812 74663

Table 6 shows the running times for Naïve Bayes as
well as all the ensemble learning algorithms using Naïve
Bayes classifiers as base models. The running time for
online bagging is generally somewhat greater than for batch
bagging. The total number of times each training example
is examined is the same for both batch and online bagging
with Naïve Bayes classifiers. However, online bagging
requires a greater number of procedure calls to the learning
algorithm (MT as opposed to M), which may explain the
running time difference. On the other hand, online boosting
has a clear running time advantage over batch boosting.
Online boosting’s fewer sweeps through the dataset clearly
outweigh any reduction in the number of base models
returned by batch boosting, especially for larger datasets.
Tables 7-8 give the running times for MLPs and the batch
and online ensemble algorithms. This time, both online
bagging and online boosting are faster than their batch
counterparts. The batch algorithms are slowed down
because each MLP requires ten cycles through the dataset.

5 Conclusions
In this paper, we discussed online versions of

bagging and boosting and gave both theoretical and
experimental evidence that they can perform comparably to
their batch counterparts in terms of accuracy while running
much faster. The difference between the accuracies of the
batch and online ensemble algorithms is largely a function

of the differences between the accuracies of the batch and
online base model learning algorithms. When lossless
online base model learning algorithms are available (such as
for Naïve Bayes classifiers), the performances of the
ensemble algorithms tend to be comparable. In this paper,
we experimented only with batch datasets, i.e., one is not
concerned with concept drift. Online algorithms are useful
for batch datasets that cannot be loaded into memory in
their entirety. We plan to experiment with online domains--
-domains where data arrive continually and where a
prediction must be generated for each data point upon
arrival. In these situations, the learner may be given
immediate feedback (such as a calendar assistant which may
suggest a meeting time which the user can either select or
change) or may obtain feedback periodically. The time-
varying nature of such datasets make them more difficult to
deal with but more needy of online ensemble learning
algorithms.

References
[1] Nikunj C. Oza and Stuart Russell, “Online Bagging
and Boosting,” in Artificial Intelligence and Statistics
2001, Key West, FL, USA, pp. 105-112. January 2001.

[2] Nikunj C. Oza and Stuart Russell, “Experimental
Comparisons of Online and Batch Versions of Bagging
and Boosting,” The Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, pp. 359-364, August 2001.

[3] Leo Breiman, “Bagging Predictors,” Machine
Learning, Vol. 24, No. 2, pp. 123-140, 1996.

[4] Yoav Freund and Robert Schapire, “A Decision-
Theoretic Generalization of On-line Learning and an
Application to Boosting,” Journal of Computer System
Sciences, Vol. 55, No. 1, pp. 119-139, 1997.

[5] Nikunj C. Oza, “Online Ensemble Learning,” Ph.D.
thesis, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, 2001.

[6] Stephen D. Bay, “The UCI KDD Archive,”
http://kdd.ics.uci.edu , Department of Information and
Computer Sciences, University of California, Irvine. 1999.

[7] Alan Fern and Robert Givan, “Online Ensemble
Learning: An Empirical Study,” The Seventeenth
International Conference on Machine Learning, Stanford,
CA, pp. 279-286, July 2000.

[8] Herbert K.H. Lee and Merlise A. Clyde, “Lossless
Online Bayesian Bagging,” Journal of Machine Learning
Research, Vol. 5, pp. 143-151, 2004.

